2024-01-02 22:21:06 | 宏博教育网
2022高中必背88个数学公式有哪些,我整理了相关信息,希望会对大家有所帮助! 宏博教育网
圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
等差数列
1、等差数列的通项公式为:
an=a1+(n-1)d(1)
2、前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式.
3、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
和=(首项+末项)*项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
项数=(末项-首项)/公差+1
等比数列
1、等比数列的通项公式是:An=A1*q^(n-1)
2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意两项am,an的关系为an=am·q^(n-m)
3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N*,则有:ap·aq=am·an,
等比中项:aq·ap=2arar则为ap,aq等比中项.
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.
性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
抛物线
1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。
a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
一、正余弦定理
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
二、诱导公式
一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
三:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
六:π/2±α及3π/2±α与α的三角函数值之间的关系:
三、两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
四、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
五、半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
六、和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
七、某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
以上就是宏博教育网整理的高考数学公式2024 高中必背88个数学公式 高中所有数学公式整理相关内容,想要了解更多信息,敬请查阅宏博教育网。>高考数学必背公式总结 高考数学必背公式总结大全 你们知道高中数学的学习,其中有哪些需要背的公式吗,高考数学中必背的重点公式有哪些呢?下面小编给大家整理了关于高考数学必背公式总结的内容,欢迎阅读,内容仅供参考!高中数学重点公式大全1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1__x2=c/
高中物理常用公式 高中物理常用公式如下: 质点的运动: 1、平均速度V平=s/t(定义式)、有用推论Vt2-Vo2=2as。 2、中间时刻速度Vt/2=V平=(Vt+Vo)/2、末速度Vt=Vo+at。 3、中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2、位移s=V平t=Vot+at2/2=Vt/2t。 4、加速度a=(Vt-Vo)/t{以Vo为正方向,a
>高考地理常考知识点梳理 高考地理常考知识点梳理(精选) 高中地理,在大学里的很多专业也会是广泛应用的科目,也是高考中非常重要的科目之一。下面小编给大家整理了关于高考地理常考知识点梳理的内容,欢迎阅读,内容仅供参考!高考地理常考知识点梳理1高考地理西北地区荒漠化的原因深居内陆距海遥远,气候干旱大风频繁。日照时间长,蒸发量大于降水量。土质疏松,遇水崩解,易于侵蚀
>高考地理常考知识点梳理 高考地理常考知识点梳理(精选) 高中地理,在大学里的很多专业也会是广泛应用的科目,也是高考中非常重要的科目之一。下面小编给大家整理了关于高考地理常考知识点梳理的内容,欢迎阅读,内容仅供参考!高考地理常考知识点梳理1高考地理西北地区荒漠化的原因深居内陆距海遥远,气候干旱大风频繁。日照时间长,蒸发量大于降水量。土质疏松,遇水崩解,易于侵蚀
2023高考语文答题技巧作答方法归纳高三语文考试答题技巧注意语言连贯题先从语句形式方面考虑,要求话题一致,陈述对象一致,叙述角度一致,情调保持一致,上下文句式保持基本一致,与上下文思路保持连贯。还要注意语言音节上的和谐及押韵。2023高考语文的复习方法第一,榨干自己做过的每一张卷子,每考完一次试,都会尽快对答案,但对答案不是简单地看看ABCD就了事的。对于语文,把每一道题的解析都看一遍,前五道
高考数学必考知识点2022 数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了.接下来是我为大家整理的高考数学必考知识点2022,希望大家喜欢! 目录 高考数学必考知识点一 高考数学必考知识点二 高考数学必考知识点三 高考数学必考知识点四 高考数学必考知识点一 一、集合、简易逻辑(14课时,8个) 1.集合;2.子集;3.补集;4.交
2023高考语文答题技巧作答方法归纳高三语文考试答题技巧注意语言连贯题先从语句形式方面考虑,要求话题一致,陈述对象一致,叙述角度一致,情调保持一致,上下文句式保持基本一致,与上下文思路保持连贯。还要注意语言音节上的和谐及押韵。2023高考语文的复习方法第一,榨干自己做过的每一张卷子,每考完一次试,都会尽快对答案,但对答案不是简单地看看ABCD就了事的。对于语文,把每一道题的解析都看一遍,前五道
高考志愿填报技巧? 总结: 新高考专科线内分数排名换算公式:历史类2020年对应位次=2021年位次与本科线位次差-2021年位次与本科线位次差*人数增加的比例+2020年文科线位次。物理类2020年对应位次=2021年位次与本科线位次差+2021年位次与本科线位次差*人数减少的比例+2020年理科本科线位次。 综合考虑线差,位次,3+1+2文理人数变化换算,特别适合专科批定位,填志愿参
2023-09-20 09:52:38
2023-10-18 22:34:52
2023-12-16 14:37:46
2023-10-25 06:26:54
2023-09-25 01:37:30
2023-03-26 18:16:57